4 resultados para human leucocyte antigens

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Umbilical cord blood (UCB) is one of the richest sources for hematopoietic stem/progenitor cells (HSPCs), with more than 3000 transplantations performed each year for the treatment of leukemia and other bone marrow, immunological, and hereditary diseases. However, transplantation of single cord blood units is mostly restricted to children, due to the limited number of HSPC per unit. This unit develops a method to increase the number of HSPCs in laboratory conditions by using cell-free matrices from bone marrow cells that mimic 'human-body niche-like' conditions as biological scaffolds to support the ex vivo expansion of HSPCs. In this unit, we describe protocols for the isolation and characterization of HSPCs from UCB and their serum-free expansion on decellularized matrices. This method may also help to provide understanding of the biochemical organization of hematopoietic niches and lead to suggestions regarding the design of tissue engineering-based biomimetic scaffolds for HSPC expansion for clinical applications.